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Introduction

S EVERALdifferent types of orbital elements have been used over
the years for spacecraft trajectory design. Four frequently used

orbital elements are Cartesian elements (CE), Keplerian elements
(KE), equinoctial elements (EE), and modified equinoctial elements
(MEE), the details of which are given in [1]. CE-based equations are
singularity free but are computationally difficult to solve; KE and EE
equations can be solved efficiently but have singularities at an
inclination or eccentricity of 0 (KE equations) or an eccentricity of 1
(EE equations).

MEE-based equations of motion are singularity free for all tra-
jectories with inclinations of less than 180 deg and exhibit the same
computational advantages as equations based on EE or KE. For these
reasons,MEE-based equations ofmotion are good candidates for use
in low-thrust escape trajectory design.

To our knowledge, a complete treatment of escape trajectory
design making use of MEE-based adjoint equations incorporating
the third-body and higher-order Earth gravitational perturbations has
not appeared previously in the literature, although previous research-
ers have looked at more restricted aspects of the total problem [2]. To
implement trajectory design incorporating the perturbations, the
Jacobian matrix of the Earth-centered inertial (ECI) state vector
� rT vT �T is derived and its elements are presented in this Note. As
an example, a low Earth orbit (LEO) to hyperbolic orbit transfer
trajectory with J2 to J6 Earth gravity and sun–moon gravitational
perturbations is solved using an indirect method.

Equations of Motion for Flight Under Small
Perturbing Forces

The defining equation for spacecraft motion under small perturb-
ing forces written in terms of MEE [3] is as follows:

dZ

dt
� B�P�G� � b (1)

where Z� �p f g h k L �T , and the symbols used for the
state variables are same as those used in [3]. (A third term must be
added into the parenthesis of the first term on the right-hand side of
Eq. (1) if other perturbing accelerations such as radiation pressure

and aerodynamic drag are considered. In thisNote, only gravitational
and thrust accelerations are considered.) P is the perturbing
acceleration due to thrust, b is the time rate of change of Z when
perturbing forces are not present, andG is the perturbing acceleration
due to the higher-order gravitational terms of Earth and additional
celestial bodies. Both P and G are expressed in the rotating RSW
coordinate system as described in [4]. The equations for the matrixB
and vector b written in terms of MEE are given by [3].

Mathematical Statement of the Time-Optimal Problem

The time-optimal problem for spacecraft flight is given as follows:

maximize � tf (2)

subject to
dZ

dt
� F�t;Z;P� � B�P�G� � b (3)

with boundary conditions

Zi�t0� � Z�0�i with 1 � i � 6 (4)

Zj�tf� � Z�f�j with 1 � j � 6 (5)

where tf is the time offlight, andZ�0�i andZ�f�j are the given ith and jth
components of the state vector at the initial and final times,
respectively. It is important to note that the number of initial states set
by Eq. (4) does not need to equal the number of final states set by
Eq. (5).

Optimal Control of Ordinary Differential Equation

The Hamiltonian of the dynamical system given by Eq. (3) is

H � �TF�t;Z;P� (6)

Pontryagin’s maximum principle [5] implies that the optimal
control law and trajectory solve the system of differential-algebraic
equations (7–9):

H�Popt� �max
P
H�P� (7)

dZ

dt
� F�t;Z;Popt� � B�Popt �G� � b (8)

d�

dt
�� @H

@Z
(9)

The control vector P can be written as P 	 u, where u is a unit
vector pointing in the direction of the thrust vector, and P is the
magnitude of P. In this Note, P is assumed to be fixed, so that the
optimal control problem becomes a problem of finding a time history
of the pointing vector u.

Aside from Eqs. (4) and (5), the system of differential-algebraic
equations (7–9) has the following additional boundary conditions,
which are derived from the first-order optimality conditions [5] for
time-optimal problems:

�m�t0� � 0; if themth component of Z�t0� is not given (10)

�n�tf� � 0; if the nth component of Z�tf� is not given (11)

H�tf� � 1 (12)
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Solving the boundary value problem (BVP) defined by Eqs. (4),
(5), and (7–12) involves finding an initial adjoint vector and a tf such
that this system of equations is satisfied. When the initial condition
for a state variable is not specified, the initial value of that state
variable will be subjected to optimization also. For the rest of this
Note, the collection of the initial adjoints, state variables, and the time
offlight tf subjected to optimizationwill be referred to as the solution
of the BVP.

It can be shown geometrically that theu that leads to Eq. (7) can be
expressed in the following way [5]:

u opt �
BT�

kBT�k (13)

Substitution of Eq. (7) into Eq. (8) renders the system of differential-
algebraic equations (7–9) into a system of nonlinear ordinary
differential equations consisting only of Eqs. (8) and (9).

For the cases in which H is not an explicit function of time, the
optimal � and Z will produce an H that is constant throughout the
duration of the flight [5], a fact that is useful for determining the
optimality of the control and state vectors.

The gradient of the Hamiltonian is given as follows:

�
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�
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(17)

where �g is the sum of the non-Keplerian Earth gravitational
perturbations and third-body effects from the sun and the moon, and
QT is the matrix that transforms a vector from the ECI frame to the
RSW frame and can be found in [3].

Deriving @r
@Z, and

@v
@Z for the MEE-based system is one of the main

objectives of this research, and elements of these gradients are

presented in the Appendix. @B
@Z and @b

@Z are derived in [2], and
@�g

@r ,
@Q
@r ,

and @Q
@v are derived in [6].

Numerical Example

In this section, the solution to an example problem is presented.
The problem involves the design of an LEO to hyperbolic orbit
transfer trajectory and demonstrates the utility of MEE-based
systems in solving problems involving escape trajectories.

The trajectory optimization problem concerned in this Note is
solved using an indirect method. In comparison with discretization-
based methods such as a direct method [7] and a hybrid method [2],
the indirect method yields a solution that is closer to optimum. A
major drawback of using an indirect method is the difficulty of
obtaining a solution when the initial guesses for adjoints and states
(for cases of free initial states) are not close to the actual optimal
solution. Indirect methods are therefore useful for cases in which the
mission involved is similar to a previous one, or when homotopy
approaches are used, as is the case in the example discussed here.

SNOPT [8], a software package written in FORTRAN 77, is the
nonlinear package used in this work. The specific version of SNOPT
used in this work is designed to interface with MATLAB®. The
software solves nonlinear programming problems encountered in
this work using a gradient-based search method [9]. All calculations
presented in this Note used the default feasibility tolerance of 10�6.

The integrator used for all calculations is MATLAB’s ODE45
variable stepRunge–Kutta solver. The initial time step is set to 10�2 s
and the relative and absolute tolerances are both set to 10�10.

There is an important difference between the way in which the
trajectory optimizationwas carried out in thiswork and themethod of
solution presented in [9]. In [9], the solution is obtained by
minimizing a weighted sum in the following form:

s�w1�p�tf� � ptarget�2 � w2�f�tf� � ftarget�2 �w3�g�tf�
� gtarget�2 � w4�h�tf� � gtarget�2 �w5�k�tf� � ktarget�2

� w6��L�tf��2 �w7�H�tf� � 1�2 (18)

In this Note, a solution is obtained by configuring SNOPT to act only
as a constraint solver [8].

The values presented in all of the tables in this section are
displayed to twelfth digits of precision after the decimal. The epoch
used in the example problem is 1 January 2008, 00:00:00. TheP used
in the problem is 9:8 
 10�5 km=s2, which is the value used in [9].

The perturbing accelerations used in the example presented here
are the Earth zonal gravitational perturbations ranging from the
second to the sixth (J2 to J6) orders and the third-body effects due to
the sun–moon gravity. The ephemerides of the sun and the moon are
calculated using MATLAB codes.‡ Table 1 lists the initial and target
values for the transfer problem, as well as the actual achieved values.
To ensure fast convergence for the first homotopy step, the initial and
final states used in this example,with the exception ofp�tf�, are set to
be identical to those used in [9]; moreover, the perigee rp�tf� used in
this example is also the same as that used in [9].

The solution to the example problem is obtained iteratively. In the
first iteration, the solution to the example problem in [9] is set as the
initial guess of the optimal solution, but the actual problem solved in

Table 1 Initial, end, and achieved values

Parameters Initial Target Achieved at tf

p, km 7000 88200.000000000015 88199.999375565108
f 0 1.1 1.0999999920423695
g 0 0 1:2138900187114166 
 10�8

h tan�1
2
�
180

 28:5� tan�1

2
�
180

 1� 0.0087268683298500661

k 0 0 2:1138332143705307 
 10�10

L, rad Free Free 20.04590043994158
�L 0 0 2:6626795099105038 
 10�4

‡Data available online at http://wise-obs.tau.ac.il/~eran/MATLAB/
Ephem.html [retrieved 19 December 2009].
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the iteration has a slightly higher eccentricity than that of the pro-
blem in [9]. The second iteration uses the solution obtained from the
first iteration, and the eccentricity of the target orbit is again incre-
ased slightly from that of the previous iteration. The outlined
procedure is repeated until the transfer problem is solved for e� 1:1.
The increment of eccentricity is 0.1 for the first homotopy step
and is reduced to 0.05 for the subsequent steps. It follows that a
total of 21 homotopy steps are used to solve the problem. The
outlined iterative procedure yields the following solution:
tf� 6192:914215953497 s, �p�t0� � 4:8495448249895343 s=km,
�f�t0���1426:3833992063583s, �g�t0��121:19890110385845s,
�h�t0���54850:548574064494 s, �k�t0��15887:730027143522,
and L�t0� � �3:2774971170996596 rad.

The Hamiltonian for the system with the solution given here is
very close to unity at the end of flight,H�tf� � 1� 1:1354 
 10�10,
thus demonstrating that the control vector P satisfies the first-order
optimality condition. It is important to note that the invariance of H
with respect to time cannot be used as an indicator for optimality
because the gravitational perturbations from the sun and themoon are
explicit functions of time. This implies that the optimal trajectory’s
Hamiltonian is an explicit function of time; hence, dH=dt is not zero
[5]. Figure 1 is the time history of the adjoint of L. As shown in the
figure, both the initial and final values of �L are 0; therefore, the free–
free conditions for L are met. Plots for the time histories of the
Hamiltonion, state variables, and other adjoint variables are given
in [10].

Conclusions

To obtain the analytical forms of the MEE-based optimal control
equations, the Jacobian matrix for the ECI state vector was derived,
and its elements are presented here. An example problem involving
the design of an escape trajectory under the effects of higher-order
Earth gravity terms and sun–moon perturbations using the matrix is
given. The equations for the elements of the Jacobian matrix will be
especially applicable for the design of escape trajectories using any
indirect method, and the example problem serves as a baseline case
for further investigations such as studies on the use of more realistic
thrust acceleration or additional gravitational perturbations.

Appendix: Elements of @r
@Z and @v

@Z

The variables used in the equations that follow are the same as
those used in [3].

q� 1� f cosL� g sinL; r� p
q

s2 � 1� h2 � k2; �2 � h2 � k2

X � AXBX; where AX �
r

s2

BX � cos�L� � �2 cos�L� � 2hk sin�L�
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VX � CXDX; where CX ��
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